Zero-Divisor Graph with Respect to an Ideal*
نویسندگان
چکیده
Let R be a commutative ring with nonzero identity and let I be an ideal of R. The zero-divisor graph of R with respect to I, denoted by ΓI(R), is the graph whose vertices are the set {x ∈ R \ I| xy ∈ I for some y ∈ R \ I} with distinct vertices x and y adjacent if and only if xy ∈ I. In the case I = 0, Γ0(R), denoted by Γ(R), is the zero-divisor graph which has well known results in the literature. In this article we explore the relationship between ΓI(R) ∼= ΓJ(S) and Γ(R/I) ∼= Γ(S/J). We also discuss when ΓI(R) is bipartite. Finally we give some results on the subgraphs and the parameters of ΓI(R).
منابع مشابه
Properties of extended ideal based zero divisor graph of a commutative ring
This paper deals with some results concerning the notion of extended ideal based zero divisor graph $overline Gamma_I(R)$ for an ideal $I$ of a commutative ring $R$ and characterize its bipartite graph. Also, we study the properties of an annihilator of $overline Gamma_I(R)$.
متن کاملA Graphical Characterization for SPAP-Rings
Let $R$ be a commutative ring and $I$ an ideal of $R$. The zero-divisor graph of $R$ with respect to $I$, denoted by $Gamma_I(R)$, is the simple graph whose vertex set is ${x in Rsetminus I mid xy in I$, for some $y in Rsetminus I}$, with two distinct vertices $x$ and $y$ are adjacent if and only if $xy in I$. In this paper, we state a relation between zero-divisor graph of $R$ with respec...
متن کاملA module theoretic approach to zero-divisor graph with respect to (first) dual
Let $M$ be an $R$-module and $0 neq fin M^*={rm Hom}(M,R)$. We associate an undirected graph $gf$ to $M$ in which non-zero elements $x$ and $y$ of $M$ are adjacent provided that $xf(y)=0$ or $yf(x)=0$. Weobserve that over a commutative ring $R$, $gf$ is connected anddiam$(gf)leq 3$. Moreover, if $Gamma (M)$ contains a cycle,then $mbox{gr}(gf)leq 4$. Furthermore if $|gf|geq 1$, then$gf$ is finit...
متن کاملINDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS
Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$, if no two vertices of $S$ are adjacent.The independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.
متن کاملThe total graph of a commutative semiring with respect to proper ideals
Let $I$ be a proper ideal of a commutative semiring $R$ and let $P(I)$ be the set of all elements of $R$ that are not prime to $I$. In this paper, we investigate the total graph of $R$ with respect to $I$, denoted by $T(Gamma_{I} (R))$. It is the (undirected) graph with elements of $R$ as vertices, and for distinct $x, y in R$, the vertices $x$ and $y$ are adjacent if and only if $x + y in P(I)...
متن کاملZero-divisor and Ideal-divisor Graphs of Commutative Rings
For a commutative ring R, we can form the zero-divisor graph Γ(R) or the ideal-divisor graph ΓI(R) with respect to an ideal I of R. We consider the diameters of direct products of zero-divisor and ideal-divisor graphs.
متن کامل